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ABSTRACT  

In this work we propose a delay differential equation as a lumped parameter or compartmental infectious 

disease model featuring high descriptive and predictive capability, extremely high adaptability and low 

computational requirement. Whereas the model has been developed in the context of COVID-19, it is 

general enough to be applicable mutatis mutandis to other diseases as well. Our fundamental modeling 

philosophy consists of a decoupling of public health intervention effects, immune response effects and 

intrinsic infection properties into separate terms. All parameters in the model are directly related to the 

disease and its management; we can measure or calculate their values a priori basis our knowledge of the 

phenomena involved, instead of having to extrapolate them from solution curves. Our model can 

accurately predict the effects of applying or withdrawing interventions, individually or in combination, and 

can quickly accommodate any newly released information regarding, for example, the infection properties 

and the immune response to an emerging infectious disease. After demonstrating that the baseline model 

can successfully explain the COVID-19 case trajectories observed all over the world, we systematically 

show how the model can be expanded to account for heterogeneous transmissibility, detailed contact 

tracing drives, mass testing endeavours and immune responses featuring different combinations of limited-

time sterilizing immunity, severity-reducing immunity and antibody dependent enhancement.  
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INTRODUCTION 

We split this discussion into two Sections, one general and the second more specific.  

 

§1  OVERVIEW OF DISEASE MODELING APPROACHES 

With the spread of COVID-19 like wildfire all over the world, infectious disease dynamics has suddenly 

been promoted from a niche area of dynamical systems theory to the foremost topic in applied mathematics 

and sciences research. Mathematical modeling is the only scientific tool which allows us to predict the 

trajectories of the disease in advance and take intervention measures accordingly. There are four 

approaches to modeling of an infectious disease, which we describe in summary below. 

• Lumped parameter or compartmental model : These are differential equation models, like S-I-R 

and S-E-I-R. In most cases these models use ordinary differential equations (ODE), some though not 

many use delay differential equations (DDE) and a few use partial differential equations (PDE). 

These models are deterministic in that the equations do not involve random variables. The advantage 

of these models is that they are physically insightful and computationally tractable (especially ODE 

and DDE models). The drawback is that the division of population into compartments automatically 

requires averagings and assumptions; the extent to which these limitations fetter the performance of 

the model depends to a large degree on the model itself. We shall elaborate on this type of model in 

the next Section.  

• Agent-based model : This model considers people as lattice sites on a network. Each site can be in 

one of several states – typical states are healthy and susceptible, exposed and non-infectious, 

asymptomatic infectious and at large, symptomatic and quarantined etc. A lattice site contracts the 

infection with a certain user-defined probability if its one or more neighbours are infectious, and then 

progresses through the successive states with user-defined probabilities and durations. The advantage 

of this model is that it is the closest representation of reality and hence is capable of extreme accuracy. 

Thus for example, it can incorporate a sophisticated contact tracing effort with multi-level two-way 

tracing, or predict the effects of a single unlicensed party. The disadvantages are enormous 

computational cost, lack of physical insight into the results and sensitivity of the results to the 

underlying network structures assumed by the modellers. Among prominent examples of agent-

based models are the studies conducted by the London School of Hygiene and Tropical Medicine 

[1], Imperial College [2] and Los Alamos National Laboratory [3]. Another such model [4] has been 

able to explain the linear growth in corona cases seen in many regions of the world – linear disease 

trajectory is not seen in differential equation models except as a marginal case.  

• Stochastic differential equation model : These attempt to combine the features of lumped parameter 

and agent based models, by writing differential equations which feature random variables. Examples 

are the Cornell University model [5] and the Jadavpur University model [6]. Our personal preference 

is for the preceding two kinds of models since they are more direct and intuitive. 

• Data-driven model : These models simply take the existing data of COVID-19 spread over the past 

week or month (or longer) and use machine learning etc methods to generate a forecast for the next 

week or month. They pay little or no attention to the underlying processes driving the spread of the 

disease. The ease of preparing these models for (at least potential) publication contributes to their 

popularity and their huge numbers in the literature; at least one of these efforts [7] has failed on the 

long term to live up to the hype which it initially generated. 

This concludes our summary of the different approaches in existence to the mathematical modeling of 

infectious diseases in general and COVID-19 in particular. What we propose in this Article is a lumped 

parameter model; we shall now present a summary of the state of the art in this area. 
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§2  LUMPED PARAMETER MODELS 

The first ever model for an infectious disease was of this type – it was the S-I-R model invented in 1927 by 

WILLIAM KERMACK and ALEXANDER MCKENDRICK [8] for generating the epidemiological 

curves of plague. A hundred years later, this model has been applied directly to COVID-19 as well. More 

common for this disease however is the S-E-I-R model, which we describe briefly. The four compartments 

here stand for susceptible, exposed, infected and removed (recovered or dead), and the equations are 

 

1

1
2

2 3

3

d

d

d

d

d

d

d

d

S SI

t N

E SI
E

t N

I
E I

t

R
I

t

β

β
β

β β

β

= −

= −

= −

=

   , (1) 

where the β’s are constants. Although all the β’s look like rates, they actually represent two kinds of real-

world phenomenon. β1 for example is a true rate; it is the number of people whom one infected person 

infects in one unit of time. β3 however is not a true rate but a reciprocal time – the fourth equation 

dR/dt = β3I attempts to represent the fact that patients remain infected for an average duration of 1/β3 

before being removed from consideration. This is a conceptual stretch; for if at t = 0 we have a certain 

number I0 of infected people and set β2 = 0 (by whatever means), then the subsequent infection profile looks 

like I = I0 exp(−β3t). In reality however, if there are I0 infected people today and no fresh infections, then 

they will all recover more or less uniformly within the next 10 or 14 days, or whatever is the infection 

period – there will not be a wave of recoveries at the start and a small but finite number of infected people 

several months down the line. This is a limitation of lumped parameter ODE models.  

A second limitation of these models is that the parameters are often heuristic and not related directly to 

real-world phenomena governing the disease. For example, you may ask the question, “Suppose it turns 

out that the asymptomatic infection period, which was earlier thought to be 4 days, is actually 7 days, then 

which β’s would have to change and by how much ?” or equivalently “Suppose the authorities of a 

university campus were to initiate mandatory weekly testing of all students, then which β’s would change 

and by how much ?” These questions are all but impossible to answer for the basic S-E-I-R model (1).  

More elaborate models with eight or more dependent variables and even more parameters [9,10] have been 

set up in attempts to answer such questions – in such cases, the conceptual clarity of the model and the 

results arising therefrom potentially take a hit. For example, a recent study featuring such a model [11], led 

by an extremely distinguished mathematician, has been challenged [12] on the grounds that the parameters 

in the model “usually are not constrained in any [way] by our understanding of COVID-19 epidemiology” 

and that “a few of them are varied throughout a wide range, from 67 to 4,75,000 in [one instance, with] no 

justification being given for this”. Whereas it is not our aim to critique either the original study or the 

rebuttal, we do believe that a model whose basic parameters are concrete things like asymptomatic fraction 

and latent infectious period is immune to attacks of this nature. Moreover, an ODE model with excessively 

many parameters can generate good fits to existing case trajectories at many distinct points or regions of 

parameter space – future trajectories with the different parameter sets can vary widely however. The 

authors of one study [13] who had made a rash prediction on such a flimsy basis were taught their error 

the hard way [14].  

DDEs have been used in the Literature much more sparingly than ODEs. A notable example [15] dates 

from the pre-COVID era (which already appears like some sort of distant dream); this model has been 

followed up and applied to COVID by a different set of authors [16]. Although the calculations in this latter 

paper are formidable, the conclusions – namely that one should always observe physical separation minima 
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and wear a mask – are very mainstream. An elegant analytical solution to a linear DDE has been given in 

Ref. [17], which does not focus too much on the modeling aspects.  

With this somewhat lengthy Introduction, we hope that we have been able to set the context for the present 

Article. We shall propose here a lumped parameter model for the spread of an infectious disease (not 

necessarily just corona) which has an elegant structure, is not over-ripe with parameters but at the same 

time directly incorporates the effects of realistic phenomena associated with the spread, such as latent 

transmission, asymptomatic carriers and test-trace-isolate programs. Our model further has the scope to 

accommodate different kinds of immune response to the disease such as permanent immunity, temporary 

sterilizing immunity, long-lasting severity-reducing immunity, antibody dependent enhancement etc. In 

Part 1 we present the derivation and solutions of the baseline model, in Part 2 we consider enhancements 

taking into account public health effects and in Part 3 we consider enhancements taking into account 

immunity effects. While much of the discussion has COVID-19 at its core, the features we model are quite 

general and are applicable to various infectious diseases such as plague, influenza, Ebola and anything else 

which the bats, cats and rats of the world may have in store for us in the future. 

---- o ---- 

 

1 

THE BASELINE MODEL 

The treatment here closely follows our original works [18-20] in which we presented this model for the first 

time. We do not claim this Section as a novelty of the present Article, although we do believe that it is 

essential for what follows. 

 

§3  DERIVATION 

We present the derivation in more detail than just a summary because it will form the building block of all 

the advanced variants we shall present in Parts 2 and 3. We focus on a region with good mixing among its 

inhabitants, such as a neighbourhood, town, village or city (it might be advantageous to break up a big city 

into several regions though, depending on connectivity). Our model features only a single dependent 

variable y (t) which is the cumulative count of corona cases in the region as a function of time. We measure 

time in days throughout this Article. Cases can be of two types – quarantined and at large. The former by 

definition have zero contribution to spread. The latter disseminate the virus freely to healthy and 

susceptible people via interaction. By interaction we mean both in-person interaction and interaction via 

objects (for example, a case contaminating an item at a grocery store which a subsequent healthy customer 

buys qualifies as an interaction). In what follows, we shall use the word target to denote a person with 

whom an at large case interacts. This spreading via interaction can be represented through the word 

equation 

 
Rate of emergence Spreading rate of Probability of Number of 

of new cases each at large case target susceptibility at large cases

       
=         

       
   , (2) 

which we shall now express in a mathematical form.  

Every at large case has a certain rate of interaction with targets. This interaction rate can vary widely – for 

example a grocer or banker might deal with 15-20 customers a day while a working from home software 

engineer might not interact with anyone at all in a week. For a lumped parameter model, we must average 

over various kinds of people; let the average interaction rate over all at large cases be q0 persons/day. This 

q0 depends on the degree of mobility in society – in a lockdown it will be far lower than in an unlocked 

state. Not every interaction however results in a transmission – for example a target sitting in the same 
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classroom as a case might not contract the disease if both are wearing masks and sitting far enough apart. 

Similarly, a contaminated grocery item will not spread the virus to the customer if s/he sanitizes everything 

s/he buys. Let P0 be the probability (averaged over cases and targets) that an interaction between a case 

and a susceptible target actually results in a transmission. Note again the definition – given that the target 

is susceptible, P0 denotes the probability that s/he contracts the virus from the case. Then, we define the 

per-case spreading rate m0 = q0P0. We can see that m0 incorporates the effects of public health interventions. 

Since P0 is conditional on the target’s being susceptible, we now need to account for the probability that 

s/he is not. The second term on the RHS of (2) factors this in. For the baseline model we assume permanent 

immunity i.e. we assume that recovered cases are insusceptible to further infection for all time. With 

permanent immunity, the probability of a random person’s being insusceptible is the total number of 

recovered cases divided by the total number of people in the region. The former is approximately y – it is 

actually a little less than y since not all cases at any time are recovered. But if the recovery duration is 

significantly less than the overall progression of the disease, then we can make the instantaneous recovery 

assumption and treat the recovery count as y. Let the total number of susceptible people in the region at 

the start of the epidemic be N. Then the probability of a random person’s being insusceptible is y/N and 

the probability of his/her being susceptible is 1 − y/N. The instantaneous recovery assumption ensures that 

our model possesses the very important property of dy/dt being identically zero when y = N, without having 

to incorporate a lot of fancy end-effects. 

To motivate the third term, suppose hypothetically that all cases take a time τ days to recover and remain 

at large the whole time. Then the number of at large active cases now is exactly the number of people who 

fell sick between now and τ days back – mathematically, this is expressed as y (t) − y (t−τ). Here is the delay 

in the equation – note that we are using delay to express the recovery duration rather than an inverse rate, 

as in the S-E-I-R and related models. Of course, every case having the same recovery time and remaining 

at large throughout is simplistic. For one, symptomatic cases (with a few negligent exceptions) will 

generally go into quarantine after manifesting symptoms. For another, contact tracing drive will yield and 

isolate asymptomatic as well as pre-symptomatic or latent cases. We now partion the cases into three 

classes : (a) contact traced cases, (b) untraced symptomatic cases and (c) untraced asymptomatic cases. Let 

the number μ1 between 0 and 1 denote the fraction of total cases who are asymptomatic, let μ3 between 0 

and 1 denote the fraction of total cases who do not get contact traced, let τ1 denote the asymptomatic 

infection period and τ2 the latency or pre-symptomaticity period during which a to-be-symptomatic case is 

transmissible prior to developing symptoms.  

The class (a) or contact traced cases account for 1−μ3 of the total. This is a quasi-heuristic rather than a 

phenomena-driven parameter which suffices for the baseline model. For this model, we also make two 

assumptions whose effects counteract each other – the first is the assumption of zero non-transmissible 

incubation period (NTI) and the second is that of instantaneous contact tracing. The first assumption 

implies that if a target contracts the virus, then s/he begins transmitting immediately following exposure. 

The second assumption implies that public health authorities track down a person’s contacts as soon as 

they begin the tracing process. We have used these assumptions so as not to clutter the baseline model with 

parameters – in Part 2 we shall show how to relax them. If the contact tracing starts from freshly reporting 

symptomatic cases, then, with the assumptions in place and taking for granted that all cases transmit 

continuously and uniformly, the average duration that the secondary cases of the reporting cases remain 

at large is τ2/2. Class (b) or untraced symptomatic cases account for fraction μ3 (1−μ1) of the total cases and 

they remain at large for the latency period τ2 before manifesting symptoms and going into quarantine (the 

baseline model does not account for the actions of negligent individuals who we hope are few in number). 

Finally, class (c) or untraced asymptomatic cases account for fraction μ3μ1 of the total cases and these 

remain at large for the asymptomatic infection period τ1. Applying the ( ) ( )y t y t τ− −  argument to each 

class yields the mathematical representation of the third term on the RHS of (2) as 

 ( )( ) ( )( ) ( )3 2 1 3 2 1 3 11 ( / 2) (1 ) ( ) ( )n y y t y y t y y tμ τ μ μ τ μ μ τ= − − − + − − − + − −    . (3) 

Multiplying all the terms on the RHS of (2) and simplifying the algebra in (3), we get 
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 ( ) ( )0 3 2 1 3 2 1 3 1

d
1 ( ) 1 ( / 2) 1 ( ) ( )

d

y y
m y t y t y t y t

t N
μ τ μ μ τ μ μ τ

 
 = − − − − − − − − −  

 
   , (4) 

which is the retarded logistic equation, and the baseline model. 

Equation (4) is a six-parameter model – the parameters are m0, N, μ1, μ3, τ1 and τ2. Among these, the last 

two are well-known – they are about 7 days and 3 days respectively [21]. These are values we shall use 

throughout the entirety of this Article. N is partially known since it is expected to be a sizeable fraction 

(say about 50 percent) of the region’s total population, especially if the region is relatively small and well-

connected. The dependence of the trajectories on N is not very sensitive anyway. The asymptomatic 

fraction μ1 is partially-to-well known since each region has its own estimate of this parameter; this estimate 

is accurate or too low depending on whether contact tracing is extensive or poor and tests are abundant or 

scarce. μ3 is known to public health authorities who are aware of how many symptomatic cases they have 

detected through contact tracing and how many from walk-in tests – it is inaccessible to scientists who are 

not in contact with such authorities. Finally, m0 is difficult to measure a priori – although it can be estimated 

to some degree from mobility studies and/or surveys, it is more likely that given all the other parameters, 

it will have to be extrapolated from a data fit. Thus, an insider (i.e. a person with access to detailed 

information) basically has just one parameter to tune when attempting to fit a given data curve; an outsider 

has two or three. We can reasonably say that our model is frugal when it comes to parameters. 

 

§4  SOLUTIONS 

We first note that (4) enables a direct calculation of the reproduction number R at any stage of evolution 

of the disease; the formula is 

 3 1 3
0 2 1 3 1

1 2
1

2

y
R m

N

μ μ μ
τ μ μ τ

+ −  
= − +  

  
   . (5) 

This follows from an elementary stability analysis which has been derived in the prior work [20,22] – the 

calculation of R from an ODE model [23] is non-trivial, and is in general limited to the starting value R0 

only. We briefly present six classes of solutions of (4). These are also taken from prior work [18-20] and 

they do not need detailed explanations. We use numerical integration to solve (4), the method being second 

order Runge Kutta with a step size of 0·001 day. We solve (4) in a Notional City having an initial 

susceptible population of N = 3,00,000 and an initial condition of zero cases to start with and 100 

cases/day for the first seven days; such a City will be our solution domain in the entire Article. For all 

Cities in this Section, we assume μ1 = 0·8. The parameter values of the six Cities A to F as well as real-

world examples of each city are given in the Table below, while the solutions for these Cities are shown in 

the Figure which follows.  

City m0 μ3 Description Example 

A 0·23 0·5 

Epidemic 

contained via 

public health 

measures 

All cities in New 

Zealand 

B -do- 0·75 

Epidemic grows 

initially, reaching 

partial herd 

immunity [20] 

Most or many 

cities in India and 

in California 

(USA) 

C 0·5 -do- 

Epidemic 

progresses to herd 

immunity with 

little intervention 

attempted 

None 
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D 

0·5 upto 40,000 

cases and 0·23 

thereafter 

-do- 

Late lockdown 

causes initial 

explosion before 

settling down to 

partial herd 

immunity 

New York City, 

USA 

E 
0·23 upto 80 days 

and 0·5 thereafter 

0·5 upto 80 days 

and 0·1 thereafter 

Advanced contact 

tracing drive 

enables reopening 

with no spreading 

None 

F -do- 
0·5 upto 80 days 

and 0·2 thereafter 

Reopening causes 

a second wave 

Cities in UK, 

Germany 

Table 1 : Six solution classes of the baseline model (4). These correspond to different kinds of corona trajectories seen 

all over the world. 

 

In each plot of the below Figure, we show three things – the case count y(t) as a blue line, its derivative 

( )y t  as a green line and the weekly case growth scaled down by a factor of 7 in grey bars. This latter is 

called the epidemiological curve or “epi-curve” and is of great interest to epidemiologists. 

 

Figure 1 : Case curves for the solution classes mentioned in Table 1. Adapted from Reference [20]. The symbol ‘k’ 

denotes thousand and ‘L’ lakh or hundred thousand. 

 

This shows us that the baseline model is itself capable of generating a diverse range of epidemic trajectories 

which we see in the real world. We now let the prior work be – the baseline model has been derived in a 

manner which will motivate the various extensions, and enough evidence has been accumulated that this 

model is realistic and has mathematical advantages relative to conventional lumped parameter models. 
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Henceforth we focus on the extension of the baseline model to various scenarios which can and do arise in 

reality, in terms of both public health interventions and immune response. 

---- o ---- 

 

2 

PUBLIC HEALTH INTERVENTION EFFECTS 

Here we build upon the baseline model to accommodate the effects of various public health interventions. 

Our focus shall be on the generalization process of the model itself, rather than on the solutions of these 

generalized models or the fitting of these solutions to different regions. This is because the augmented 

models will often be multiparameter and complex. As private researchers, we do not have access to 

accurate information regarding the parameter values, and for different combinations of these values, the 

solutions can show a wide variety of behaviour as well as non-unique fits. Rather, our hope is that people 

with access to much more information than us (for example the public health authorities of a university or 

a city) will be able to incorporate their knowledge into our model to obtain case trajectories with high 

accuracy as well as predictive power.  

Before beginning the generalizations, we note three features of the baseline equation (4) which represents 

the word equation (2). The first is that it represents a clean decoupling of the various classes of effects – 

public health terms come into the first term on the RHS, immune response effects into the second term and 

intrinsic disease characteristics such as asymptomatic fraction and symptomatic latent period into the third 

term. This is not the case for the S-E-I-R model. This phenomenon we call separation of parameters (which 

sounds like a conflation of separation of variables and variation of parameters [24]). This parameter 

separation means that the question we posed in §2 about the effects of changing the asymptomatic infection 

period from 4 days to 7 days can be answered in one line basis of (4) [our second question is more involved 

and the answer is coming later in this Section]. 

The second noteworthy feature of the baseline equation is that it is cast in terms of a single variable rather 

than an array of variables. Quantities such as the numbers of hospitalizations and deaths can be easily 

extracted from the cumulative case trajectory by using the known hospitalization and mortality rates and 

intervals between contraction and recovery or death. Thus, the smaller number of variables does not 

amount to a limitation on the information that can be obtained from our model. Rather, by using DDE 

instead of ODE, it is possible to create a versatile model with a less complex appearance. 

The third feature of (4) is its negligible computational cost. The code for solving (4) takes about 100 lines 

of Matlab to write, and about one second on a laptop to run. The sizes and runtimes will remain of the 

same order for all the variations we shall consider in this Article. With this, we go on to our consideration 

of the individual public health intervention steps.  

 

§5  AGE/VULNERABILITY AND TRANSMISSIBILITY STRUCTURING 

Our first generalization deals with structuring. The most common structuring is age-structuring which is 

important because the effects of COVID-19 on young and old people are vastly disparate (the latter are 

much more severely affected on average). We here consider a stratification of society into two classes – 

young people and old people. To be more accurate, the “young” class includes everyone who is less 

vulnerable, irrespective of age (for example, immunocompetent 60-year olds with no known comorbidities 

also qualify) while the “old” class include everyone who is more vulnerable (including say 20-year olds 

with known immune disorders). Let y1 denote the cumulative case count in the young population and y2 

the case count in the old population. Instead of a single interaction rate q0, we now need three interaction 

rates : q1, that of young people with other young people, q2, that of young people with old people and q3, 
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that of old people with old people. Let N1 and N2 denote the initial susceptible numbers of young and old 

people. Writing (2) for the young people and expressing it mathematically as in (4), we get 

 

( ) ( )

( ) ( )

1 1
1 0 1 3 1 2 1 3 1 2 1 3 1 1
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1
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d
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 
 = − − − − − − − − −   

 

 
 + − − − − − − − − −   

 

   . (6) 

Recall that P0 is the probability that an interaction between a case and a susceptible target actually results 

in a transmission. The first line on the above RHS denotes the transmission to young targets from young 

cases while the second line denotes transmission to young targets from old cases. Note that the 

susceptibility probability is 1 − y1/N1 in both terms – since q1 and q2 already accommodate the fact that the 

target is a young person, the thing to ask here is, given that the target is young, what is the probability that 

s/he is not immune. By analogy, the case counts among the old people will be given by  

 

( ) ( )

( ) ( )

2 2
2 0 1 3 1 2 1 3 1 2 1 3 1 1

2

2
3 0 2 3 2 2 1 3 2 2 1 3 2 1

2

d
1 ( ) 1 ( / 2) 1 ( ) ( )
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y
q P y t y t y t y t

N

μ τ μ μ τ μ μ τ

μ τ μ μ τ μ μ τ

 
 = − − − − − − − − −   

 

 
 + − − − − − − − − −   

 

   . (7) 

It should be obvious how the model can be generalized to include many more vulnerability classes. Most 

existing ODE disease models can be extended for age structuring however (the logistic model is a notable 

exception), so we do not tout this as a signal virtue of the new DDE model. 

A structuring which is trickier to handle is the following : suppose that among the N interacting people, N1 

wear masks all the time and N2 don’t wear them at all (N1+N2 = N). This kind of situation is very common 

especially in USA where there is considerable resistance to mask-wearing in some places. A structured 

model is superior to a univariate model here for two reasons : (a) it can enable public health authorities to 

quantitatively determine how much better the mask wearers will fare and accordingly formulate public 

policy, and (b) it is possible that mask wearers might suffer less severe symptoms due to receiving smaller 

viral loads, so the hospitalization and mortality characteristics might be different among the two groups 

(whether this is true or not for COVID-19 is currently unknown – a recent study [25] reports a small but 

statistically significant correlation between mask mandates and hospitalization rates, and we haven’t seen 

anything more definitive). 

The raw input for this situation is a set of four probabilities : the probability P1 that the disease jumps from 

a masked case to a masked target when they interact, the probability P2 that the disease jumps from a 

masked case to an unmasked target, the probability P3 that the disease jumps from an unmasked case to a 

marked target and the probability P4 that the disease jumps from an unmasked case to an unmasked target. 

Common sense says that P1 will be the smallest and P4 the greatest of the four probabilities; studies seem 

to indicate that P2 is less than P3 i.e. one mask between two people is more useful when on the case than 

on the target. We assume that the interaction rate is constant i.e. every person interacts at the same rate q0 

with other persons, whether masked or otherwise. We also ignore age-structuring. This last statement is a 

general philosophy we shall adopt throughout this Article – when considering each new situation, we 

shall incorporate the modification directly into the baseline model and not a variant form. Whoever 

needs an equation with both age and mask structuring can derive it by him/her-self. 

To model this situation, let y1 denote the cumulative number of cases in the masked population and y2 the 

same thing in the unmasked population. Considering the y1-dynamics first, there will be two terms just as 

in (6) to account for transfers to masked targets from masked and unmasked cases. For each term, we again 

have the structure (2). By our assumptions, masked cases interact with all others at an average rate q0, and 

since all interactions take place equally, a fraction N1/N of these will be with masked targets. Then, we 

have the probability P1 of mask to mask transmission, the probability 1−y1/N1 of masked target 

susceptibility and a set of delay terms for the number of masked cases at large. For the second term, 
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unmasked cases again interact with everyone at rate q0 and fraction N1/N of these interactions are with 

masked people. Then we have the probability P3 of transmission from unmasked case to masked target, 

followed by the susceptibility probability as above and a second set of delay terms counting the unmasked 

cases at large. This implies  

 

( ) ( )

( ) ( )

1 0 1 1 1
1 3 1 2 1 3 1 2 1 3 1 1

1
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2 3 2 2 1 3 2 2 1 3 2 1

1

d
1 ( ) 1 ( / 2) 1 ( ) ( )

d

1 ( ) 1 ( / 2) 1 ( ) ( )

y q N P y
y t y t y t y t

t N N

q N P y
y t y t y t y t

N N

μ τ μ μ τ μ μ τ

μ τ μ μ τ μ μ τ

 
 = − − − − − − − − −   

 

 
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 

    , (8) 

and by analogy  
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 

 
 + − − − − − − − − −   

 

   , (9) 

which complete the formulation of the transmissibility-structured model. 

Below we show a sample plot of the solutions of (8,9) for the parameters τ1 = 7 and τ2 = 3 (as for all 

simulations in this Article), μ1 = 0·8, μ3 = 0·75, q0 = 4, P1 = 1/30, P2 = 1/20, P3 = 1/15, P4 = 1/3, N1 = 2,50,000 

and N2 = 50,000. In these and similar plots, we use the same colours for y1 as used for y in Figure 1, and 

red for cases, magenta for derivative and cyan bars for epi-curve of y2. 

 

Figure 2 : Case trajectories with extensive mask use. The symbol ‘k’ denotes thousand. 

 

We can see about 55,000 cases among the masked population which amount to just above 20 percent of 

the total 2,50,000 masked people. By contrast there are about 27,000 unmasked cases which amount to 

more than 50 percent of the 50,000 unmasked people.  

We now run the code again, this time setting N1 = N2 = 1,50,000 i.e. equal numbers of masked and 

unmasked people.  
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Figure 3 : Case trajectories with 50 percent mask use. The symbol ‘k’ denotes thousand and ‘L’ lakh or hundred 

thousand. Note that the cyan bars obscure the grey bars in many places; the envelope of the latter is the green curve 

which is still visible. 

 

Not only is the unmasked population infected almost entirely but also there is more than 50 percent 

infection level among the masked people. This type of statistic can be used by public health authorities to 

encourage mask use – by not masking, not only are you increasing your own chances of catching corona 

but you are subjecting the law-abiding people to extra risk as well. Of course, for a propaganda drive, we 

first need good-quality data on the efficacy of mask use – the values of P1 to P4 we used here for the 

simulations were just rabbits taken out of a hat. Two sources which can yield these values are (a) laboratory 

experiments and simulation studies, and (b) follow-ups of exposures arising from contract tracing activities, 

including cases as well as non-cases who were exposed to a known transmitting case. 

Transmissibility structuring can also be used to model the effect of super-spreaders, who transfer the disease 

to many targets. Super-spreaders can be of two kinds – people who interact with others a lot, and people 

who have exceptionally high viral loads and infect almost whomever they come into contact with. To 

model this setup, we can define two classes of people, superspreaders and “normal” spreaders, with the 

former having smaller population and higher interaction rates and/or transmission probabilities compared 

to the latter. Since the equations for this situation will show almost no difference from the mask structured 

model, we dispense with a detailed derivation. 

 

§6  CONTACT TRACING 

This is one of the more difficult aspects to incorporate into a lumped parameter model, and is an area where 

agent-based models have an intrinsic advantage. The DDE however is capable of taking this in its stride. 

As we have already seen, the baseline model itself incorporates contact tracing to a fair extent. It contains 

two assumptions however – those of zero non-transmissible incubation period (NTI) and instantaneous 

tracing – which cannot be included in a more detailed model where contact tracing is a priority. It also 

contains a heuristic parameter μ3 which is too coarse for the present application.  

To develop this aspect, we first assume that there is no contact tracing whatever; then (4) looks like 

 ( )0 1 2 1 1

d
1 ( ) 1 ( ) ( )

d

y y
m y t y t y t

t N
μ τ μ τ

 
= − − − − − −   

 
   . (10) 

Now we have to throw away the assumption of zero NTI. For this, we introduce a new variable denoting 

the exposed people. In the ODE models it is denoted by E; since we are using y for cases, we see no harm 
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in using x for exposures instead (in general we prefer x (t) to y (t) for a single variable – the nomenclature 

here is a carryover from our original somewhat cumbersome four-variable model [26] where x denoted 

susceptible people, y infections and so on). We define that a person transitions from x to y at the instant 

s/he turns transmissible, which is also the moment when s/he will first return positive if tested for the virus.  

What the RHS of (10) denotes is actually the rate of exposures – interaction between cases and targets leads 

to exposures rather than cases among the latter. So, we can replace the left hand side (LHS) of (10) by 

dx/dt as a first step in going past the zero NTI assumption. Doing this we have 

 ( )0 1 2 1 1

d
1 ( ) 1 ( ) ( )

d

x y
m y t y t y t

t N
μ τ μ τ

 
= − − − − − −   

 
   . (11) 

Now let τ4 denote the period during which a person remains exposed before turning into a case – as in all 

lumped parameter models, this must be an average over all cases. Then, all the people who got exposed 

between time t and t + Δt will turn into cases between t + τ4 and t + τ4 + Δt. This implies that 
_ 4t t

x y
τ+

=  or,  

 ( )0 1 2 1 1

_ 4

d
1 ( ) 1 ( ) ( )

d t

y y
m y t y t y t

t Nτ

μ τ μ τ
+

 
= − − − − − −   

 
   , (12) 

or, 

 ( )4
0 4 1 2 4 1 1 4

d ( )
1 ( ) 1 ( ) ( )

d

y y t
m y t y t y t

t N

τ
τ μ τ τ μ τ τ

− 
= − − − − − − − − −   

 
   . (13) 

The difference between (10) and (13) is just a shift of the infection curves by τ4, which is a small quantity 

in relation to the epidemic’s overall progress (a typical value of τ4 is 4 days). Hence, in the baseline model 

we could afford to make the zero NTI assumption without significant error.  

For a sophisticated contact tracing model however, a little reasoning shows that this assumption is 

unacceptably simplistic. For if a patient’s contacts were to be rounded up as soon as they have been 

exposed, then they would all go into quarantine during their NTI itself and not spread the disease to 

anyone. In practice however, contact tracing is time-consuming – the starting patient’s test results have to 

come in (which itself may take a day or more), authorities have to talk to the patient, find out the names 

and places he gives, call the people involved, access CCTV footage and/or card histories in public places 

(if permitted) etc. The authorities might be understaffed/overworked and might take time to get to the 

patients; the patients might not remember their entire movements accurately and might give out the story 

piecemeal. So, by the time the authorities get to the contacts, some will have already crossed the NTI into 

the transmissible asymptomatic or latent infection stage.  

We assume here that the contact tracing takes place as follows. When a symptomatic patient reports corona 

to the authorities, they start identifying the people with whom s/he came into contact over the past τ2 days. 

They take a time τ3 to unearth and quarantine a fraction P3 of the cases among these contacts. The 

quarantine of healthy people is an unpleasant collateral of a contract trace and does not affect our model. 

With this strategy of one-level, forward contact tracing, let us try to formulate the equivalent of (11). The 

heuristic contact-traced fraction μ3 of (4) must now get replaced by an expression cast in terms of the ground 

realities τ3, τ4 and P3 and the other existing parameters. 

When a symptomatic case, say Mr X, just reports for quarantine, he will have spent the preceding τ2 days 

unknowingly spreading virus to targets. In any lumped parameter formulation, we must assume that Mr X 

spreads the disease uniformly and continuously during his latency period – this assumption makes sense 

when not one but a hundred simultaneous cases are taken into consideration. Among Mr X’s targets are 

the person Ms Y he infected right when he turned transmissible and the person Ms Z he infected just before 

reporting for quarantine. When Mr X locks himself up, the former has spent τ2 days at large while the latter 

has spent 0 days at large. The authorities take a further τ3 days to obtain these contacts, at which point Ms 

Y has got an exposure time of τ2+τ3 while Ms Z has got an exposure time of τ3. There are three possible 

scenarios now. 
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Case 1 : τ4 > τ2+τ3. In this case, Ms Y is still in NTI and hence every other contact of Mr X is in NTI 

as well. Those that are identified do not transmit – the average time T spent transmissible and at large by 

the contact traced cases is identically zero. 

Case 2 : τ2+τ3 > τ4 > τ3. In this case, Ms Y has passed NTI period into transmission but Ms Z is still 

in NTI. Let t = 0 be the time when Mr X turned transmissible so that t = τ2 is when he quarantines, and let 

n be the total number of contacts whom he has infected with r = n/τ2 being the infection rate. By hypothesis, 

the contact trace occurs at t = τ2 + τ3; the last of the exposures who turns transmissible before being traced 

is the one who was exposed at t = τ2 + τ3 − τ4. The target who was exposed to Mr X at any time t prior to 

τ2 + τ3 − τ4 turns transmissible at time t + τ4 and thus remains transmissible and at large for a duration  

(τ2 + τ3) − (t + τ4). The total time which all these cases have spent at large is 

 ( ) ( )
_2 _3 _ 4

2

2 3 4 2 3 4

0

 d
2

r
U t r t

τ τ τ

τ τ τ τ τ τ

+ −

= + − − = + −    . (14) 

Recalling that rτ2 = n and dividing by n gives the average time spent at large by contact traced cases as 

 
( )

2

2 3 4

22
T

τ τ τ

τ

+ −
=    . (15) 

If τ3 and τ4 are both zero (which marginally satisfies the conditions of this case), i.e. we make the 

assumptions of zero NTI and instantaneous tracing, then this reduces to τ2/2 as it had better.   

Case 3 : τ4 < τ3. In this case Ms Z turns transmissible as well before isolation. We can use a procedure 

similar to Case 2 above to calculate an average time for which the contact traced case remains at large. 

Since the situation is implausible and the algebra is tedious, we skip this exercise. If teaching this model in 

a class, we will assign this as a hacking-type homework assignment or exam question. 

So we have found the average duration T that a contact traced case remains at large – what we now need 

is the absolute probability that a random case is contact traced (recall that P3 is the conditional probability 

that a case is contact traced, given that s/he was exposed by a symptomatic case). This absolute probability 

is composed of two probabilities : (a) that the random case has been infected by a symptomatic case and 

not an asymptomatic one (secondary cases of asymptomatic cases do not get picked up by definition), and 

(b) P3. To calculate the probability (a), we use a self-consistency procedure.  

Let this unknown probability be X. We assume, very plausibly, that the secondary contacts of every case 

(symptomatic or otherwise) are asymptomatic with the fraction μ1 (as defined for the disease as a whole) 

and symptomatic with the fraction 1−μ1. Consider a random asymptomatic case. With probability X she 

has been infected by a symptomatic case; with further probability P3 she gets picked up in the contact 

tracing drive. If she does, i.e. with probability P3X, she spends time T at large. Otherwise, she remains at 

large for the entire asymptomatic infection period τ1. Combining the two, on average an asymptomatic case 

remains at large for a time 

 ( )1 3 1 31T P X P XTτ= − +    . (16) 

Similarly, a symptomatic case gets picked up in the drive and spreads for time T with probability P3X; he 

spends the entire latency period τ2 at large otherwise. Thus, the average time spent at large by symptomatic 

cases is 

 ( )2 3 2 31T P X P XTτ= − +    . (17) 

 

So we have a fraction μ1 of asymptomatic cases remaining at large for time T1 and a fraction 1−μ1 of 

symptomatic cases remaining at large for time T2. Since by the model assumptions all cases transmit equally 

and uniformly, the total numbers of secondary cases spawned by these two types of cases must be in the 

ratio μ1T1 to (1−μ1)T2. This ratio must be the same as the ratio of the probabilities that a random case has 

been infected by an asymptomatic and a symptomatic case respectively; thus we have 
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   , (18) 

which rearranges into a quadratic equation for X 

 ( )  ( )2
3 1 3 1 1 3 2 1 1 1 3 2 2 3 2 1(1 ) (1 ) (1 ) 0PT P P X P PT Xμ τ μ τ μ τ μ τ τ τ μ− − − + + − + − − − =    . (19) 

One of its two roots, X = X*, should be a number between 0 and 1, which is the desired probability. 

Finally, we are at a stage where we can write the model equation. A random case is contact traced with 

probability P3X*, so this is the equivalent of 1−μ3 in the baseline model (4). The contact traced cases remain 

at large for duration T as calculated in the case-wise analysis. Thus, the exposure equation is given by 

( )( ) ( )0 3 1 3 2 1 3 1

d
1 ( ) * ( ) 1 1 * ( ) 1 * ( )

d

x y
m y t P X y t T P X y t P X y t

t N
μ τ μ τ

 
 = − − − − − − − − − −  

 
   , (20) 

and the case equation follows as 
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   . (21) 

The structure is identical to (13) and very similar to (4) but the terms T and X* now arise from calculations 

of considerable sophistication, based directly on the details of the contact tracing process. 

Similarly, it should also be possible (though hasslesome) to implement two-level contact tracing where 

contacts of contacts are also identified and grounded. We leave this task to public health authorities who 

are actually carrying out contact tracing operations (or to students of a disease modelling course who are 

willing to take on pathologically long assignments just for a few more marks).  

Since (21) has nearly the same form as the baseline, we refrain from showing simulation time traces. Rather, 

we give the values of X and hence of the capture probability P3X or 1−μ3 for some realistic sets of parameter 

values. With the standard values 7 and 3 for τ1 and τ2 and taking τ4 = 4 (the total incubation period is 

approximately 7 days on average [21]), the value τ3 = 2 gives T = 1/6. This implies that contact traced cases 

remain at large for a relatively short time. The fraction of cases which is caught depends highly on two 

parameters – the asymptomatic fraction μ1 and the tracing success probability P3. Thus, if 30 percent cases 

are asymptomatic, then P3 = 1/2 leads to capture of 25 percent of the total cases while P3 = 9/10 leads to 

capture of 46 percent of the total cases. If 80 percent cases are asymptomatic however, then P3 = 1/2 

captures not even 5 percent of the total cases, which increases to 8·7 percent if P3 is raised to 9/10. 

This is not a surprise. Since the contact tracing is being carried out starting from symptomatic cases, the 

process efficiency automatically becomes crippled if they are few in number. Tracing tertiary contacts i.e. 

contacts of secondary cases will not really help since the secondary cases get quite a low air-time anyway. 

Two-way contact tracing, i.e. when a new case reports symptomatic then trying to identify the case’s source 

of exposure, and again following up on that source’s other exposures can lead to the capture of many more 

cases. This process is difficult however since an exposure typically occurs 7 days prior to symptoms, and a 

typical patient will hardly be expected to remember his/her movements from 7 days past. Another way of 

capturing asymptomatic cases is by performing regular mass testing; this we discuss below. 

 

§7  MASS TESTING 

Periodic testing of the entire population is yet another disease mitigation strategy which is employed in 

organizations with small staffing and large funding. The White House, USA is one example. Another 

example is the Ithaca campus of Cornell University, USA where one of us (SHAYAK) is located. Cornell 

tests almost the entire campus community once a week for the virus (and also employs a battery of 

surveillance and punitive measures to prevent student misbehaviour). After an initial outbreak (followed 
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by harsh crackdowns), the number of on-campus cases here has remained very low, with every week seeing 

single-digit new case counts. 

To model this effect, we start as usual from the underlying structure (2). As with contact tracing in the last 

Section, the first two terms remain unchanged – what frequent testing changes is the duration for which 

cases remain at large. To lend concreteness to the discussion, we introduce numerical values at this step 

itself. Let the testing be carried out once a week, let the test itself be perfectly sensitive and let the results 

take one day to come through. The asymptomatic and latent periods remain τ1 = 7 and τ2 = 3 as they always 

were. Let Mr X be an asymptomatic case who does not get contact traced and has his test on a Monday. 

With equal probability 1/7, Mr X can turn transmissible on any day of the week. If he starts on a Monday, 

he transmits for only one day before he is detected and quarantined. If he starts on a Sunday, he goes 2 

days at large before capture, if Saturday then 3 days and so on until if he turns transmissible on a Tuesday, 

bad luck, he spends the entire 7-day asymptomatic infection period at large. The average duration for which 

he remains at large is (1/7) (1+2+3+4+5+6+7) which is 4 days. Similarly let Ms Y be an untraced 

symptomatic case who gets tested on Monday. She transmits for 1 day if she starts on a Monday, 2 days if 

Sunday and the full latency period of 3 days otherwise. Thus, the average duration for which she remains 

at large is (1/7) (1+2+3x5) which is 18/7 days.  

For contact tracing, we go back to the simple structure of the baseline model instead of using the 

complications of the last Section – a heuristic parameter μ3 for the escape fraction and the assumptions of 

zero NTI and instantaneous tracing. This time however, tracing will proceed from every case which is 

picked up during testing. The traced cases will spend an average at large time of half their sources; these 

latter spend 4μ1 + (18/7) (1−μ1) days. Thus we have the model 

 ( ) ( )0 3 1 3 1 3

d
1 ( ) 1 ( ) 1 ( 18/7) ( 4)

d

y y
m y t y t T y t y t

t N
μ μ μ μ μ

 
 = − − − − − − − − −  

 
   ,   where (22a) 

 ( )1 1
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2 1

7
T μ μ= + −    . (22b) 

Once again, we have the same basic structure as (4) with new parameter values. This answers the second 

question with which we had challenged the S-E-I-R model in §2. 

It is also possible to incorporate the effect of imperfect test sensitivity without too much fuss. A study [27] 

indicates that the “gold standard” RT-PCR test has a sensitivity of approximately 75 percent or lower; the 

antigen tests are typically less sensitive. With imperfect sensitivity, if a person is a case, the test has a 

probability P of actually reporting positive and a probability 1−P of coming out false negative. We assume 

that the tests are fully specific i.e. there are no false positive cases (this assumption is consistent with reality). 

To calculate the durations for which cases remain at large, we use the same argument as above. For the 

asymptomatic Mr X, this time there is a probability P that he gets caught after 4 days and a probability 1−P 

that he remains at large for the full 7 days. Similarly for the symptomatic Ms Y, there is probability P of 

capture after 18/7 days and probability 1−P of remaining at large for 3 days. The asymptomatic at large 

time is therefore 

 ( )1 4 7 1T P P= + −    , (23) 

while the symptomatic at large time is 

 ( )2

18
3 1

7
T P P= + −    . (24) 

Using these in the basic structure (2) we have 
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Thus, another sophisticated effect, namely mass testing with limited sensitivity, has also become 

incorporated into our DDE model. 
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Since the equation (25a) is similar in structure to (4), we again refrain from showing simulations. This time, 

a relevant question is, what is the effect of the testing drive on the reproduction number R. Repeating the 

procedure [22] which led to (5) shows that R for (25a) is given by 

 ( ) ( )3 1 3 2 1 3 11 1R T T Tμ μ μ μ μ= − + − +    . (26) 

Using the standard values of τ1 and τ2, μ1 = 0·8 and μ3 = 0·9, we calculate the reduction in R if the weekly 

testing drive is implemented while keeping everything else the same. We find a 38 percent reduction if the 

test is 100 percent sensitive and a 22 percent reduction if the test is 60 percent sensitive. If μ1 = 0·3 and 

μ3 = 0·5, then the reduction drops to 21 percent with fully sensitive test and 8·5 percent with 60 percent 

sensitive test. The decrease from the previous situation is not surprising since the weekly testing does not 

significantly reduce the at large duration of symptomatic cases. The value of μ1 = 0·3 is too low however 

and the earlier set of figures is more realistic. A 20-30 percent reduction in R is not jaw-dropping but not 

trivial either – it is ineffective against a really high R of say 2 but it can bring down a somewhat-above-

unity R to just below unity and extinguish the epidemic in time. This is more or less what is happening at 

Cornell University – the constant threats of disciplinary action are ensuring that students are not driving 

up the default R to an unmanageable value, and thereafter the testing program is keeping it further down. 

Again we note that although the interventions of masking, contact tracing and testing are all currently 

relevant in the context of corona, they are applicable to other infectious diseases as well as such as 

pandemic influenza and will very likely be used whenever a new infectious epidemic breaks out anywhere 

in the world (any guesses on where?). 

---- o ---- 

 

3 

IMMUNE RESPONSE EFFECTS 

While the last Part dealt with public health interventions, in this Part we turn to another aspect of the 

disease which is the human immune response. The baseline assumption is that of permanent immunity – 

one bout of infection renders a person insusceptible to the disease for all time. This assumption is valid 

whenever the immunity period is longer than the overall progression of the epidemic – immunity need not 

be genuinely lifelong. For corona, about half a dozen phylogenetically confirmed cases of second time 

infection have been found worldwide so far – 1 in Hong Kong, 2 in India, 2 in the US, 1 in Belgium, 1 in 

Ecuador and there may be a couple more which we may have missed. Less convincing evidence of 

reinfection exists for a few more cases, although the overall fraction of reinfections is negligible as least yet 

(and we hope it stays that way). A large scale antibody study [28] has found that detectable antibody titres 

persist in blood for at least three months following infection; we are yet to see a follow-up to that study. 

The question naturally arises as to what profile the spreading trajectories may take if immunity really turns 

out to be temporary in a significant fraction of the population. Once again, our focus here will not be on 

an exhaustive study of the results in various cases but on how we can incorporate different kinds of immune 

response into our DDE model. 

 

§8  SIMPLE TEMPORARY IMMUNITY 

Here we consider the case where immunity against the disease lasts for a fixed, limited duration following 

the first infection. After this duration is over, the person becomes susceptible to the disease again. One 

study [29] finds such a situation for benign human coronaviruses (not SARS, MERS or COVID-19). Let 

τ0 be the duration for which immunity lasts. As is customary in lumped parameter models, the value we 

use must be the average over the entire population. 



 
17 

 

As usual, we start from the word equation (2). Here, the second term on the RHS denotes the immune 

response so only that will be altered relative to the baseline model (4). The term must still denote the 

probability that a random person is susceptible. By our assumptions, each recovered case remains immune 

or insusceptible for a duration τ0, the immunity cutoff period, typically of the order of weeks or months. 

So, if a person once contracts and recovers from the infection at time t, then s/he remains immune upto 

time t + τ0 and then becomes susceptible again. At any given instant, the people who are immune are all 

those who have contracted the infection during the last τ0 days, and no one else. Hence, the number of 

insusceptibles at time t is exactly the number of new infections which have occurred between time t − τ0 and 

t, which is y (t) − y (t − τ0). The structure of this term and the underlying logic are the same as those motivating 

the other delay terms in (4). In proposing this structure, we have again assumed that recoveries are 

instantaneous (see §3) and also have ignored deaths. Since the mortality rate of COVID-19 is fortunately 

quite low, this second assumption is reasonable as well. Then, the probability that a random person at time 

t is susceptible is  

 0( ) ( )
1

y t y t
P

N

τ− −
= −    , (27) 

and working this into (2) yields 
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   . (28) 

This is the generalization of the baseline model to the case where immunity is temporary.  

We run a simulation with parameters m0 = 0·23, μ1 = 0·8, μ3 = 0·75 and τ0 = 200 days. The result is shown 

in Figure 4. 

 

Figure 4 : Case trajectories with temporary immunity. The symbol ‘k’ denotes thousand and ‘L’ lakh or hundred 

thousand.  

 

We can see multiple waves of disease in this case, which is consistent with what has been found in the prior 

literature [30,31] using different models. Note that the waves continue indefinitely; we have artificially 

stopped the simulation at t = 1400 days.  
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§9  COMPLEX IMMUNE RESPONSE 

The assumption that every case becomes completely susceptible after a certain time is perhaps over-

simplified. Specially for COVID-19, we do not have nearly enough data about the immune response to the 

pathogen. However, for diseases in general, there are three kinds of immunity – sterilizing immunity which 

completely prevents reinfection, severity-reducing immunity which mitigates the symptoms during 

reinfection and transmissibility-reducing immunity which mitigates the patient’s transmissibility during 

reinfection. Studies on the benign coronaviruses [32] have found that although sterilizing immunity wanes 

in about a year, severity-reducing immunity lasts much longer. In addition to the above, there is a 

dangerous phenomenon called antibody-dependent enhancement (ADE) in which case a reinfection takes 

a more severe form than the original infection. This happens as a result of imperfect binding of antibody to 

the virus, followed by a misrecognition of live virus for inactivated virus by the immune system. For certain 

viruses like dengue virus, ADE can happen as an intrinsic phenomenon in almost all patients; for other 

pathogens, some patients can still experience ADE due to immune system malfunction. ADE has not been 

found for benign coronaviruses; it is unknown whether it occurs with COVID-19. Among the six 

genetically confirmed reinfection cases so far, two reported a more severe infection the second time around 

while the others reported milder infection. It is thus possible that a mixture of the various immune responses 

are occurring with COVID-19 – time alone will throw further light on this matter.  

We consider a situation where every recovered case has the probability P1 of remaining immune for life, P2 

of remaining fully immune for τ0 days and then becoming susceptible to a lower virulence form (LVF) of 

the disease and P3 (with P1+P2+P3 = 1) of remaining fully immune for τ0 days and then becoming susceptible 

to a higher virulence form (HVF) of the disease through ADE. We further assume that after catching the 

infection twice, a person does not contract it any longer (becomes either immunized or dead). To model 

this situation, we define three variables y, z1 and z2. Here y denotes the count of cases in the current form 

of the disease, z1 denotes the count of LVF cases and z2 the count of HVF cases.  

We start from the y-equation. Any person who catches the current form of the disease once is insusceptible 

to it for all future time – s/he contracts either nothing, or LVF, or HVF. Thus the susceptibility probability 

in this equation will be 1 − y/N as in the baseline model. As in the coupled models of §5, the number of at 

large cases will include all the forms of the disease, so there will be three sets of delay terms. We assume, 

for the sake of notational elegance more than anything else, that LVF and HVF have the same infection 

parameters as the current form. We then have 
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The notation n (y,z1,z2) is just a shorthand which shall save us the trouble of typing a repetitive three-line 

expression two more times.  

For the z1-equation, we ask the usual question that what is the probability of a random person’s catching 

the LVF disease. For this we have to first count the number of people who are eligible to catch the LVF. 

This includes everyone who has already contracted the default form, and that a time τ0 or more days ago, 

which is y (t−τ0). From this eligible pool however, we shall have to exclude all those who have already had 

the second infection, either LVF or HVF. So the pool of eligible targets has the size y (t−τ0) − z1(t) − z2(t). 

Given that a person is eligible, the probability of his/her catching LVF is P2. Putting all this together, the 

probability of a random person’s being susceptible to LVF is 

 0 1 2
2

( )y t z z
P P

N

τ− − −
=    , (30) 

which leads to the equation for z1 as 
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It is now a simple matter to construct the equation for z2, where everything remains the same as above 

except that the probability P2 is replaced by P3, giving 
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Equations (29,31,32) constitute a coupled set of DDEs for the dynamics of the current and the modified 

virulence forms.  

For the simulation run, we consider the same parameters as in §8 above and take P1 = 2/5, P2 = 3/5 and 

P3 = 0. Thus, every person who has had one bout is either permanently insusceptible (40 percent chance) 

or susceptible to the LVF after 200 days (60 percent chance). The run is below, in Figure 5.  

 

Figure 5 : Case trajectories with given probabilities of different kinds of immune response. The symbol ‘k’ denotes 

thousand and ‘L’ lakh or hundred thousand. 

 

We can see that instead of multiple identical waves as in Figure 4, there is only a very broad and low second 

wave. The first wave is entirely in the current form of the disease while the second features both the current 

and the LVF forms. Because the probability of catching LVF is quite low, the wave in that form is even 

smaller than in the current form. As in Figure 4, the runs continue beyond 1400 days but we have stopped 

it at that time. The total numbers of y and z1 are bounded by N and 3N/5 i.e. 3,00,000 and 1,80,000 

respectively, which automatically prevents infinite perpetuation of the waves; the wave shapes are modified 

to fit this constraint.  

Most of the assumptions we have made in this Section can be relaxed very easily. Incorporating different 

transmissibilities and durations for the three forms of infection is trivial, while working round the 

maximum two infections constraint is also easy. For the latter situation, we introduce more forms of the 

disease, say ultra-LVF w1 and ultra-HVF w2 and ploddingly calculate the susceptibility probability of each 

person to the various infections to use in the structure (2). We shall not embark on this exercise unless 

emerging corona data shows it to be necessary. 

---- o ---- 

 

CONCLUSION AND FUTURE DIRECTIONS 

First we give an outline of this rather lengthy Article. In one sentence we can say that the Article is in 

passacaglia form. After the Introduction (§1,2), in §3 we have presented a “word-equation” (2) which forms 
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the super-structure for our various models. The unadorned bassline is (4), whose solutions we have 

presented in §4. These solutions show strong similarities with the actual COVID-19 trajectory data 

observed in various parts of the world. The next five Sections are the passacaglia itself as we treat the bass 

to one after another variation. The first variation (§5) is the incorporation of age and transmissibility 

structuring. The second variation (§6) is a detailed model of contact tracing, a process which is traditionally 

considered difficult to incorporate into a deterministic lumped-parameter model. The third variation (§7) 

is weekly testing, which is currently relevant in certain limited contexts but might become more widespread 

as more and more testing kits are manufactured and/or new testing technologies developed. The fourth 

variation (§8) deals with simple temporary immunity where a recovered case again becomes susceptible to 

the disease after a time interval. The fifth and last variation (§9) deals with a complex immune response 

where a recovered case can show different kinds of responses with different probabilities.  

Our study is extremely relevant at the current time. Although corona has been with us a good few months, 

it is unfortunately far from over. With many countries in the grip of sweeping second waves, a versatile 

model with all a priori parameters is essential to make predictions of hospitalizations and deaths, both with 

status quo and with different interventions hypothetically applied or removed. Part 2 covers these situations 

in detail. Part 3 is a glimpse into a potential future and will become pressingly useful if COVID-19 

immunity really turns out to be temporary in a significant fraction of the population. It is eminently possible 

to create models which combine different variations, for example a model with mask-structuring, realistic 

contact tracing and complex immune response. Bolstered with good data, such models should have high 

predictive power. There have been several cases of model failure and consequent public health mistakes 

with COVID-19; New York State, USA [33] is one of the more conspicuous examples. We hope that our 

new model, with a simple and robust baseline option and a plethora of customizable augmentation options, 

shall be more resilient to failures of this kind.  

Lumped parameter models do have certain intrinsic limitations. While ours is particularly versatile, there 

are some places where it nevertheless runs up against a wall. For example, the parameters q0, P0 in the 

baseline model have to be averaged over all at large cases. During contact tracing we were forced to make 

assumptions regarding continuous and uniform transmission etc. For these reasons, DDE cannot replace 

agent-based models. There are certain questions which a lumped parameter model can never answer. 

“Today there are exactly 5 active cases in a locality – what is the probability that three weeks later it will 

be (a) zero ? (b) more than 100 ?” is one such question. As noted in §1 however, agent-based models are 

very demanding in terms of computational time and effort; many such studies [4,34] use networks of 10,000 

people and not larger. It is noteworthy that the two works we just cited both report on phenomena which 

are traditionally considered outside the ambit of lumped-parameter models; containment of the epidemic 

in the former study and mass testing and isolation in the latter. Our model is able to deliver almost all (an 

exception being for example the stable linear solution of Reference [4]) the results of the agent-based models 

at a minuscule fraction of the computational cost.   

The versatility and computational ease also mean that any newly reported information regarding say the 

immune response can be incorporated immediately, and the resulting case trajectories computed virtually 

on the same day that the study is released. This will be a huge advantage when a vaccine is finally released 

for mass use. By that time, we shall know much more about the immune response to the disease and to the 

vaccine than we do now. So, instead of performing advance analyses of vaccination [31] with insufficient 

information, we can wait till concrete info arrives and then quickly build that into our model. After that 

we can use it for important calculations such as how to apportion the initially limited doses of vaccine to 

ensure fastest deceleration of the pandemic, and how many doses need to be administered in what kind of 

timeframe to eradicate the disease altogether. 

Finally, the bulk of this Article deals with the specific disease COVID-19, whether implicitly or explicitly. 

This is only natural since we are writing at the height of this raging pandemic. Nowhere however has this 

limited our scope. COVID-19 is a particularly vicious virus so it has probably all the weaponry required to 

generate a successful pandemic – asymptomatic and latent transmission are two of the most effective 

ammunitions. Indeed, it is not often that a pandemic can grind the entire world to a halt – the last time this 
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had happened was a century ago with a particularly virulent strain of influenza (good boys and girls don’t 

name viruses after places). With the advent of modern medicine, a pandemic like this was not something 

that anyone even dreamt of. Less successful pandemics such as SARS-1 and 2005 bird flu have some but 

not all of the features which make corona so transmissible – SARS-1 for example had no latent transmission 

while bird flu was extremely transmissible among birds (like unmasked people for corona) but less so 

among humans (like masked people). These more benign viruses can also be modelled easily using our 

approach. The public health interventions we have studied – masking, contact tracing and testing – are 

common to any infectious disease; they are about all we can throw at an emerging pathogen when there is 

no vaccine or cure. The immune response is also completely general – between the various possibilities, 

we have likely covered every possible infection, known or unknown. Of course, the model in its present 

form is not applicable to vector-borne diseases such as malaria and dengue. Scalar to vector extension in 

any physical problem is hasslesome but never undoable; the same should be true here.  

Thus, although we have written this Article in terms of the specific disease COVID-19, we do not intend it 

to be a use-and-throw whose relevance will cease as soon as corona becomes over (though we have no idea 

at present as to when that happy day will arrive). Infectious disease has always been a part of human 

existence, and with the advent of jetliner travel, pathogens can be carried halfway across the world in a 

matter of hours. With some of us unlikely to change our dietary habits or our epidemic management 

transparency protocols in the near future, it is highly probable that pandemics are here to stay. We hope 

that the same may be said of our model as well.  

---- o ---- o ---- o ----      ---- o ---- o ---- o ---- 
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